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The Joint as an Inclined Plane: The Slippery 
Slope 
This is the companion article for the presentation on the DVD. 

This article was rejected for publication by the online journal BMC 
Physiology with the following reviewers comments: 

"Major Compulsory Revisions (that the author must respond to before a 
decision on publication can be reached) 

1. The author’s point that tools commonly used to analyze loads and 
forces across joints isolate parts of the body, as well as assume that the 
isolated portions of the body and structures outside of the part being 
analyzed are in equilibrium is very important and worthy of emphasis. 
However, the point that “in biologic bodies, the muscles and ligaments 
from within the falling body are useless in restraining the body from 
sliding down the slope” may be a hasty generalization or over-
simplification. While the concrete view that individual muscles or 
ligaments can not provide this function is fair, it is quite possible that 
multi-component systems composed of muscles, tendons, ligaments, 
fascia and bones that span across larger regions of our bodies (e.g., the 
entirely abdominal cage) may be able to create stiffened sub-systems 
(e.g., like the tensegrity systems or trusses Dr. Levin and others have 
described in the past) that can effectively resist the downward slide of 
one bone across another at a single joint. This system level discussion is 
likely part of the answer to the problem, and discussion of this type of 
perspective should be added to the discussion. 

2. A detailed description of the biomechanical function of a single critical 
joint (e.g., hip), how conventional models depict it is stabilized, how this 
can’t be right, how a truss model would differ, and the physiologicaland 
biological implications of this alternative approach, also would greatly 
enhance the impact of the manuscript." 
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Background 

The commonly used model for static support of terrestrial skeletal 
creatures assumes that the skeleton is the skyscraper-like frame on 
which the soft tissues are draped. In this model, all the supporting joints 
are compression loaded and would, of necessity, be stacked like a column 
of blocks with the center of gravity of each of the superior segments in a 
plumb line with the point of support beneath it. It is assumed that the 
muscles and ligaments surrounding the joint stabilize the joint and 
balance the superior segment over its center of rotation. If the center of 
gravity would lye outside the plumb line, the mass would fall, accelerating 
at 9.8 m x sec2, responding to the pull of gravity. Most synovial joints are 
close to frictionless with a coefficient of friction in the range of .0o5 [1]. 
When using a link-segment model commonly used in biomechanical 
modeling, the joints are assumed frictionless pin joints [2]. 

Method 

Most diarthrodial joints have relatively flat surfaces and would have to be 
considered as inclined planes when their surface is tilted. Figure 1 depicts 
the forces on a body resting on an inclined plane. 

! Figure 1. 
Forces on a frictionless inclined plane. 
When there is no friction, the only direction in which a plane surface can 
direct a force on a body placed on it is normal or perpendicular to the 
surface (N). The resultant (F) of the forces N (force at right angle to the 
surface of the plane) and Mg (mass x gravity) must be a force parallel to 
the plane. It can be seen that: 

Sin A = F/Mg 
F = Mg sin A. 

Following Newton’s second law F = Ma, 



we get Mg sin A = Ma 

from which a =g sin A. 

The acceleration, a, is independent of the mass of the body and 
dependent on the angle of the slope. As the slope AB approaches vertical, 
sin A gets larger and approaches one (1) and a = g. That means that 
there will be no compression on the slope or joint reaction force. 

To put it another way:  
N, the force across the joint, is represented by the formula: 

cos A = N/Mg 
that gives us N = cos A x Mg. 
As AB becomes vertical (900), cos A = 0 and N, the force on the plane = 
0. 

There is no equal and opposite force provided by the articular surface 
that keeps the superior body mass from falling. What keeps the body 
from sliding down the slope? As there is no friction, there must be a 
tension force (t) equal and opposite a [Figure 2]. 

! Figure 2. To keep the mass from sliding, t + 
a. 
An analogy might be a rock climber hanging by his ropes against an ice 
face. Even if there is contact between the climber and the ice face, unless 
there is something gripping the ice face, the weight of the climber is born 
by the rope. 

The rope is fixed to some external structure, the mountain, for when a 
mass is accelerating, only an external force can stop it. 

Discussion 



Most joints are tilted, sometimes to the vertical, during at least part of 
their function, and we should slide off these slippery slopes. Therein lies 
the problem. Free-body and link-segment analysis, the commonly used 
tools for analyzing loads and forces across joints, isolates parts of the 
body and assumes that the isolated portions of the body are in 
equilibrium and that the structures outside of the part being analyzed are 
also in equilibrium. All link-segment models assume that there is a stable 
column of bones supporting the anatomical structure and that the soft 
tissue drapes itself on a stable, stacked, compression loaded column of 
bones. However, in joints such as the glenohumeral[3] , scapulothoracic, 
carpal, metatcarpal, facet joints of the spine, the sacroiliac, mid foot and 
forefoot joints and, in fact, most joints at some time in their functioning, 
the opposing joint surfaces are near-vertical. The weight of the body 
mass, Mg, must be suspended by the ligaments and soft tissues and not 
by compressive loading of joints (Figure 3). 

!

! Figure 3. Some joints that are near-vertical 
during normal function. a: scapulothoracic b: carpal bones c: facet joints of spine d: sacroiliac 
joints e: foot joints 
Even with the slightest tilt of the joint, the mass of the body, which is 
accelerating to the earth at a rate of 9.8 m x sec2, will start slipping off 
the joint surface and head toward the center of the earth. When walking, 



the knee is almost never straight, and, in normal stair climbing, flexes to 
60 degrees. What should be the most stable platform in human weight 
bearing is a tilted slippery plane, and the tibia-talo joint is equally 
precarious [4]. If, as in real-life, the ‘free-body’ is actually part and parcel 
of the external mass that is supposedly stabilizing it, then there is no 
external force anchoring the free-body that is sliding down the slippery 
slope of a joint. Once the body starts down the slope, there is no way for 
the body to bring itself it back to a higher level as that would be lifting 
one self by ones own bootstraps. An external force is necessary. Since the 
force cannot come from within, in biologic bodies the muscles and 
ligaments from within the falling body are useless in restraining the body 
from sliding down the slope. For example, the lumbodorsal fascia cannot 
support the sacrum and keep it from falling out of the pelvis nor can the 
hamstring muscles keep the femur from sliding off the tibia and neither 
can the calf muscles keep the tibia from sliding off the talus. 

Conclusions 

From this simple model it becomes obvious that the actual compression 
loads across joints must be much less than that that has been previously 
calculated when using free-body diagrams in which the free-body is 
assumed to be stabilized by the underlying bony column. Nor can we 
assume that the muscles above act as tension restrainers. The slippery 
slope of synovial joints becomes a fatal flaw in the rigid link-segment 
skeletal model. Even if the soft tissues above restrained the structure 
from sliding, there still would not be full body weight resting on the tilted 
joint surface. With slippery slopes as joints, and no internal forces 
capable of keeping the superior body parts from sliding off the inferior 
parts, skeletal bodies should collapse in a heap. Since real-life skeletal 
bodies are stable with little apparent effort, there must be a different 
model other than the free-body diagram, lever based models currently in 
vogue. The lever/post and lintel/ stack-of-blocks/link-segment model that 
has been in use since Borelli [5] proposed it in the sixteen hundreds, 
cannot hold itself up with near-frictionless joints. It is illogical to continue 
to use models that are inconsistent with physical laws. 

It is not the purpose of this paper to answer the question of how the 
skeletal body is stabilized but rather to alert us to the paradox of a 
construct that by physical laws should be unstable, but maintains its 
integrity with minimal effort. Certainly, biologic structures conform to 
physical laws. To quote Thompson, “Cell and tissue, shell and bone, leaf 
and flower, are so many portions of matter, and it is in obedience to the 
laws of physics that their particles have been moved, molded and 
conformed” [6]. Other systems could work. Truss systems are stable with 
frictionless joints. The angle and slipperiness of the slope of the joint is 
irrelevant in truss systems (Figure 4). 

Figure 4. a: Square frame model with rigid joints and torque b: Triangular, truss model with pin 
joints and no torque 



Frictionless or ‘pin’ joints are the hallmark of trusses. In his classic book, 
On Growth and Form, first published in 1917, D’Arcy Thompson [6] 
hypostatized that musculoskeletal frameworks might be constructed as 
trusses. Since then Pearce [7], Gordon [8, 9], Ingber and colleagues, 
[10-13], Levin [3, 14-17], Wendling [18, 19], Moreno [20], Maina [21] 
and others have used truss systems to model biologic structures. 

Finite element modeling using tetrahedral building blocks do use a truss 
system. However, the differences in the mechanics of trusses as opposed 
to hexahedral models seem to be ignored. Those using tetrahedral 
modeling should be aware that what they have created mathematically 
has the mechanical properties of a truss, not a cube, and take advantage 
of it. In a truss, there are no bending moments, just tension and 
compression, and there is no torque generated at the joints. 
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